158 research outputs found

    Discovering Implicational Knowledge in Wikidata

    Full text link
    Knowledge graphs have recently become the state-of-the-art tool for representing the diverse and complex knowledge of the world. Examples include the proprietary knowledge graphs of companies such as Google, Facebook, IBM, or Microsoft, but also freely available ones such as YAGO, DBpedia, and Wikidata. A distinguishing feature of Wikidata is that the knowledge is collaboratively edited and curated. While this greatly enhances the scope of Wikidata, it also makes it impossible for a single individual to grasp complex connections between properties or understand the global impact of edits in the graph. We apply Formal Concept Analysis to efficiently identify comprehensible implications that are implicitly present in the data. Although the complex structure of data modelling in Wikidata is not amenable to a direct approach, we overcome this limitation by extracting contextual representations of parts of Wikidata in a systematic fashion. We demonstrate the practical feasibility of our approach through several experiments and show that the results may lead to the discovery of interesting implicational knowledge. Besides providing a method for obtaining large real-world data sets for FCA, we sketch potential applications in offering semantic assistance for editing and curating Wikidata

    Clones in Graphs

    Full text link
    Finding structural similarities in graph data, like social networks, is a far-ranging task in data mining and knowledge discovery. A (conceptually) simple reduction would be to compute the automorphism group of a graph. However, this approach is ineffective in data mining since real world data does not exhibit enough structural regularity. Here we step in with a novel approach based on mappings that preserve the maximal cliques. For this we exploit the well known correspondence between bipartite graphs and the data structure formal context (G,M,I)(G,M,I) from Formal Concept Analysis. From there we utilize the notion of clone items. The investigation of these is still an open problem to which we add new insights with this work. Furthermore, we produce a substantial experimental investigation of real world data. We conclude with demonstrating the generalization of clone items to permutations.Comment: 11 pages, 2 figures, 1 tabl

    Anomaly Cancelation in Field Theory and F-theory on a Circle

    Full text link
    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes adde

    Fertility and gonadal function in female survivors after treatment of early unfavorable Hodgkin lymphoma (HL) within the German Hodgkin Study Group HD14 trial

    Get PDF
    Background In the HD14 trial, 2× BEACOPPescalated+2× ABVD (2+2) has improved the primary outcome. Compared with 4× ABVD, this benefit might be compromised by more infertility in women. Therefore, we analyzed gonadal function and fertility. Patients and methods Women ≤45 years in ongoing remission at least 1 year after therapy were included. Hormone parameters, menopausal symptoms, measures to preserve fertility, menstrual cycle, pregnancies, and offspring were evaluated. Results Three hundred and thirty one of 579 women addressed participated (57.2%) and 263 per-protocol treated patients qualified (A=ABVD: 137, B=2+2: 126, mean time after therapy 42 and 43 months, respectively). Regular menstrual cycle after treatment (A: 87%, B: 83%) and time to recovery (≤12 months) were not different. Follicle-stimulating hormone and anti-Muellerian hormone were significantly better in arm A. However, pregnancies after therapy favored arm B (A: 15%, B: 26%, P=0.043) and motherhood rates were equivalent to the German normal population. Multivariate analysis revealed prophylactic use of gonadotropin-releasing hormone (GnRH) analogues as highly significant prognostic factor for preservation of fertility (odds ratio=12.87, P=0.001). Severe menopausal symptoms were frequent in women ≥30 years (A: 21%, B: 25%). Conclusions Hormonal levels after 2+2 indicate a reduced ovarian reserve. However, 2+2 in combination with GnRH analogues does not compromise fertility within the evaluated observation tim

    Fertility and gonadal function in female survivors after treatment of early unfavorable Hodgkin lymphoma (HL) within the German Hodgkin Study Group HD14 trial

    Get PDF
    In the HD14 trial, 2×BEACOPPescalated+2×ABVD (2+2) has improved the primary outcome. Compared with 4×ABVD, this benefit might be compromised by more infertility in women. Therefore, we analyzed gonadal function and fertility

    Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis

    Get PDF
    Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancie

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients
    corecore